Publications

On this page you can find publications in scientific journals by Consortium members. This list includes papers where the three sites have worked on togther and also many that involve researchers outside the Consortium.

There are also some papers here that precede the formation of the Consortium but are nevertheless still relevant.

If there is a topic you are particularly interested in then you can use the search facility   at the top of the page to search the Title, Journal, Abstract & Authors of these publications.

The PDF icon indicates which publications have their full text available for download.

| 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1990 |

2017 (1)

  1. Assessment of selected media supplements to improve F/HN lentiviral vector production yields. Gelinas JF et al., Scientific Reports
    7: 10198, DOI:10.1038/s41598-017-07893-3   
     

2016 (7)

  1. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis Alton EW et al., Thorax
    Thorax. 2017 Feb;72(2):137-147. doi: 10.1136/thoraxjnl-2016-208406.   
     
  2. Genetic medicines for CF: Hype versus reality. Alton EW et al., Pediatric Pulmonololgy
    Pediatr Pulmonol. 2016 Oct;51(S44):S5-S17. doi: 10.1002/ppul.23543.   
     
  3. A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis. Alton EW et al., Efficacy and Mechanism Evaluation
    Efficacy and Mechanism Evaluation (2016) Volume: 3 Issue: 5   
     
  4. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Lund-Palau H et al., Expert Review Of Respiratory Medicine
    Expert Rev Respir Med. 2016 Jun;10(6):685-97. doi: 10.1080/17476348.2016.1177460. Epub 2016 May 13.   
     
  5. Transgene sequences free of CG dinucleotides lead to high level, long-term expression in the lung independent of plasmid backbone design. Bazzani RP et al., Biomaterials
    2016 Jul;93:20-6.   
     
  6. Does mass spectrometric breath analysis detect Pseudomonas aeruginosa in cystic fibrosis? Pabary R et al., The European Respiratory Journal
    Eur Respir J. 2016 Mar;47(3):994-7. doi: 10.1183/13993003.00944-2015. Epub 2016 Feb 4.   
     
  7. Human-Mouse Chimeras With Normal Expression and Function Reveal That Major Domain Swapping is Tolerated by P-glycoprotein (ABCB1). Pluchino KM et al., Biochemistry
    Biochemistry , 2016 Feb 23;55(7):1010-23.   
     

2015 (9)

  1. A Phase I/IIa Safety and Efficacy Study of Nebulized Liposome-mediated Gene Therapy for Cystic Fibrosis Supports a Multidose Trial. Alton EW et al., American Journal of Respiratory and Critical Care Medicine
    AJRCCM, Volume 192, Pages 1389-1392   
     
  2. Ex vivo and in vivo lentivirus-mediated transduction of airway epithelial progenitor cells. Leoni G et al., Current Gene Therapy
    Curr Gene Ther. 2015;15(6):581-90.   
     
  3. Multiple breath washouts in children can be shortened without compromising quality. Ahmad F et al., The European Respiratory Journal
    Eur Respir J. 2015 Dec;46(6):1814-6. doi: 10.1183/13993003.00791-2015. Epub 2015 Oct 9.   
     
  4. Identification of a Cryptic Bacterial Promoter in Mouse (mdr1a) P-Glycoprotein cDNA. Pluchino KM et al., PLoS One.
    PLoS One. 2015 Aug 26;10(8):e0136396. doi: 10.1371/journal.pone.0136396.   
     
  5. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Alton EW et al., The Lancet Respiratory Medicine
    Lancet Respir Med. 2015 Sep;3(9):684-91. doi: 10.1016/S2213-2600(15)00245-3. Epub 2015 Jul 3.   
     
  6. Recent advances in understanding and managing cystic fibrosis transmembrane conductance regulator dysfunction. Griesenbach U et al., F1000Prime Reports
    F1000Prime Rep. 2015; 7: 64.   
     
  7. Special Focus Issue on the Annual Meeting of the British Society for Gene and Cell Therapy Nicklin SA et al., Human Gene Therapy
    Human Gene Therapy. May 2015, 26(5): 247-248.   
     
  8. Cystic Fibrosis Gene Therapy in the UK and elsewhere Griesenbach U et al., Human Gene Therapy
    Hum Gene Ther. 2015 May;26(5):266-75.   
     
  9. Measurement of Serum Calprotectin in Stable Patients Predicts Exacerbation and Lung Function Decline in Cystic Fibrosis. Reid PA et al., American Journal of Respiratory and Critical Care Medicine
    Am J Respir Crit Care Med. 2015 Jan 15;191(2):233-236.   
     

2014 (6)

  1. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function. Nair C et al., The European Respiratory Journal
    Eur Respir J. 2014 Nov;44(5):1253-61. doi: 10.1183/09031936.00097014. Epub 2014 Sep 3.   
     
  2. Effects of a novel archaeal tetraether-based colipid on the in vivo gene transfer activity of two cationic amphiphiles. Le Gall T et al., Molecular Pharmaceutics
    Mol Pharm. 2014 Sep 2;11(9):2973-88. doi: 10.1021/mp4006276. Epub 2014 Jul 30.   
     
  3. Delivery of genes into the CF airway. Gill DR et al., Thorax
    Thorax. 2014 Oct;69(10):962-4. doi: 10.1136/thoraxjnl-2014-205835. Epub 2014 Jul 11.   
     
  4. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy. Davies LA et al., Human Gene Therapy. Clinical Development
    Hum Gene Ther Clin Dev. 2014 Jun;25(2):97-107. doi: 10.1089/humc.2014.019. Epub 2014 May 27.   
     
  5. Lung clearance index in primary ciliary dyskinesia and bronchiectasis. Irving SJ et al., American Journal Of Respiratory And Critical Care Medicine
    Am J Respir Crit Care Med. 2014 May 1;189(9):1147-8. doi: 10.1164/rccm.201402-0206LE.   
     
  6. Gene therapy in cystic fibrosis. Armstrong DK et al., Archives Of Disease In Childhood
    Arch Dis Child. 2014 May;99(5):465-8. doi: 10.1136/archdischild-2012-302158. Epub 2014 Jan 24.   
     

2013 (10)

  1. Toxicology study assessing efficacy and safety of repeated administration of lipid/DNA complexes to mouse lung. Alton EW et al., Gene Therapy
    Gene Ther. 2014 Jan;21(1):89-95. doi: 10.1038/gt.2013.61. Epub 2013 Nov 7.   
     
  2. The safety profile of a cationic lipid-mediated cystic fibrosis gene transfer agent following repeated monthly aerosol administration to sheep. Alton EW et al., Biomaterials
    Biomaterials. 2013 Dec;34(38):10267-77. doi: 10.1016/j.biomaterials.2013.09.023. Epub 2013 Oct 3.   
     
  3. Moving forward: cystic fibrosis gene therapy. Griesenbach U et al., Human Molecular Genetics
    Hum Mol Genet. 2013 Oct 15;22(R1):R52-8. doi: 10.1093/hmg/ddt372. Epub 2013 Aug 4.   
     
  4. Lung clearance index and high-resolution computed tomography scores in primary ciliary dyskinesia. Irving SJ et al., American Journal Of Respiratory And Critical Care Medicine
    Am J Respir Crit Care Med. 2013 Sep 1;188(5):545-9. doi: 10.1164/rccm.201304-0800OC.   
     
  5. Self-reactive CFTR T cells in humans: implications for gene therapy. Calcedo R et al., Human Gene Therapy. Clinical Development
    Hum Gene Ther Clin Dev. 2013 Sep;24(3):108-15. doi: 10.1089/humc.2012.249. Epub 2013 Jul 19.   
     
  6. A molecular comparison of microbial communities in bronchiectasis and cystic fibrosis. Duff RM et al., The European Respiratory Journal
    Eur Respir J. 2013 Apr;41(4):991-3. doi: 10.1183/09031936.00052712.   
     
  7. A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibrosis. Alton EW et al., Thorax
    Thorax. 2013 Nov;68(11):1075-7. doi: 10.1136/thoraxjnl-2013-203309. Epub 2013 Mar 22.   
     
  8. Changes in physiological, functional and structural markers of cystic fibrosis lung disease with treatment of a pulmonary exacerbation. Horsley AR et al., Thorax
    Thorax. 2013 Jun;68(6):532-9. doi: 10.1136/thoraxjnl-2012-202538. Epub 2013 Feb 9.   
     
  9. Pharmacological Characterization of a Novel ENaCα siRNA (GSK2225745) With Potential for the Treatment of Cystic Fibrosis. Clark KL et al., Molecular Therapy. Nucleic Acids
    Mol Ther Nucleic Acids. 2013 Jan 15;2:e65. doi: 10.1038/mtna.2012.57.   
     
  10. Expert opinion in biological therapy: update on developments in lung gene transfer. Griesenbach U et al., Expert Opinion On Biological Therapy
    Expert Opin Biol Ther. 2013 Mar;13(3):345-60. doi: 10.1517/14712598.2013.735656. Epub 2013 Jan 5.   
     

2012 (7)

  1. Assessment of F/HN-pseudotyped lentivirus as a clinically relevant vector for lung gene therapy. Griesenbach U et al., American Journal Of Respiratory And Critical Care Medicine
    Am J Respir Crit Care Med. 2012 Nov 1;186(9):846-56. doi: 10.1164/rccm.201206-1056OC. Epub 2012 Sep 6.   
     
  2. Rapid identification of novel functional promoters for gene therapy. Pringle IA et al., Journal Of Molecular Medicine (Berlin, Germany)
    J Mol Med (Berl). 2012 Dec;90(12):1487-96. doi: 10.1007/s00109-012-0928-6. Epub 2012 Jul 6.   
     
  3. CpG-free plasmid expression cassettes for cystic fibrosis gene therapy. Pringle IA et al., Biomaterials
    Biomaterials. 2012 Oct;33(28):6833-42. doi: 10.1016/j.biomaterials.2012.06.009. Epub 2012 Jun 22.   
     
  4. Assessment of the nuclear pore dilating agent trans-cyclohexane-1,2-diol in differentiated airway epithelium. Griesenbach U et al., The Journal Of Gene Medicine
    J Gene Med. 2012 Jul;14(7):491-500. doi: 10.1002/jgm.2643.   
     
  5. The use of CpG-free plasmids to mediate persistent gene expression following repeated aerosol delivery of pDNA/PEI complexes. Davies LA et al., Biomaterials
    Biomaterials. 2012 Aug;33(22):5618-27. doi: 10.1016/j.biomaterials.2012.04.019. Epub 2012 May 8.   
     
  6. Oral contraceptives do not appear to affect cystic fibrosis disease severity. Kernan NG et al., The European Respiratory Journal
    Eur Respir J. 2013 Jan;41(1):67-73. doi: 10.1183/09031936.00018712. Epub 2012 May 3.   
     
  7. Progress in gene and cell therapy for cystic fibrosis lung disease. Griesenbach U et al., Current Pharmaceutical Design
    Curr Pharm Des. 2012;18(5):642-62.   
     

2011 (7)

  1. Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis. Regamey N et al., Thorax
    Thorax. 2012 Feb;67(2):164-70. doi: 10.1136/thoraxjnl-2011-200585. Epub 2011 Oct 18.   
     
  2. The significance of plasmid DNA preparations contaminated with bacterial genomic DNA on inflammatory responses following delivery of lipoplexes to the murine lung. Bazzani RP et al., Biomaterials
    Biomaterials. 2011 Dec;32(36):9854-65. doi: 10.1016/j.biomaterials.2011.08.092. Epub 2011 Sep 23.   
     
  3. Differential global gene expression in cystic fibrosis nasal and bronchial epithelium. Ogilvie V et al., Genomics
    Genomics. 2011 Nov;98(5):327-36. doi: 10.1016/j.ygeno.2011.06.008. Epub 2011 Jul 2.   
     
  4. Design of gene therapy trials in CF patients. Davies JC et al., Methods In Molecular Biology (Clifton, N.J.)
    Methods Mol Biol. 2011;741:55-68. doi: 10.1007/978-1-61779-117-8_5.   
     
  5. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. McLachlan G et al., Gene Therapy
    Gene Ther. 2011 Oct;18(10):996-1005. doi: 10.1038/gt.2011.55. Epub 2011 Apr 21.   
     
  6. Current status and future directions of gene and cell therapy for cystic fibrosis. Griesenbach U et al., BioDrugs : Clinical Immunotherapeutics, Biopharmaceuticals And Gene Therapy
    BioDrugs. 2011 Apr 1;25(2):77-88. doi: 10.2165/11586960-000000000-00000.   
     
  7. Secreted Gaussia luciferase as a sensitive reporter gene for in vivo and ex vivo studies of airway gene transfer. Griesenbach U et al., Biomaterials
    Biomaterials. 2011 Apr;32(10):2614-24. doi: 10.1016/j.biomaterials.2010.12.001. Epub 2011 Jan 15.   
     

2010 (12)

  1. Cystic fibrosis: to ion transport and beyond. Bush A et al., The European Respiratory Journal
    Eur Respir J. 2010 Nov;36(5):991-2. doi: 10.1183/09031936.00056310.   
     
  2. Gene therapy for cystic fibrosis. Davies JC et al., Proceedings Of The American Thoracic Society
    Proc Am Thorac Soc. 2010 Nov;7(6):408-14. doi: 10.1513/pats.201004-029AW.   
     
  3. Validation of recombinant Sendai virus in a non-natural host model. Griesenbach U et al., Gene Therapy
    Gene Ther. 2011 Feb;18(2):182-8. doi: 10.1038/gt.2010.131. Epub 2010 Oct 21.   
     
  4. Airway remodelling and its relationship to inflammation in cystic fibrosis. Regamey N et al., Thorax
    Thorax. 2011 Jul;66(7):624-9. doi: 10.1136/thx.2009.134106. Epub 2010 Oct 1.   
     
  5. A novel mixing device for the reproducible generation of nonviral gene therapy formulations. Davies LA et al., BioTechniques
    Biotechniques. 2010 Sep;49(3):666-8. doi: 10.2144/000113498.   
     
  6. Cystic fibrosis and survival to 40 years: a study of cystic fibrosis transmembrane conductance regulator function. Simmonds NJ et al., The European Respiratory Journal
    Eur Respir J. 2011 May;37(5):1076-82. doi: 10.1183/09031936.00079010. Epub 2010 Sep 16.   
     
  7. Strategies for long-term expression of transgenes in the respiratory epithelium. Gill DR et al., Current Opinion In Molecular Therapeutics
    Curr Opin Mol Ther. 2010 Aug;12(4):386-93.   
     
  8. Cystic fibrosis gene therapy: successes, failures and hopes for the future. Griesenbach U et al., Expert Review Of Respiratory Medicine
    Expert Rev Respir Med. 2009 Aug;3(4):363-71. doi: 10.1586/ers.09.25.   
     
  9. Quantification of periciliary fluid height in human airway biopsies is feasible, but not suitable as a biomarker. Griesenbach U et al., American Journal Of Respiratory Cell And Molecular Biology
    Am J Respir Cell Mol Biol. 2011 Mar;44(3):309-15. doi: 10.1165/rcmb.2009-0265OC. Epub 2010 Apr 23.   
     
  10. Toward gene therapy for cystic fibrosis using a lentivirus pseudotyped with Sendai virus envelopes. Mitomo K et al., Molecular Therapy : The Journal Of The American Society Of Gene Therapy
    Mol Ther. 2010 Jun;18(6):1173-82. doi: 10.1038/mt.2010.13. Epub 2010 Mar 23.   
     
  11. Sputum and serum calprotectin are useful biomarkers during CF exacerbation. Gray RD et al., Journal Of Cystic Fibrosis : Official Journal Of The European Cystic Fibrosis Society
    J Cyst Fibros. 2010 May;9(3):193-8. doi: 10.1016/j.jcf.2010.01.005. Epub 2010 Mar 17.   
     
  12. Low-frequency ultrasound increases non-viral gene transfer to the mouse lung. Xenariou S et al., Acta Biochimica Et Biophysica Sinica
    Acta Biochim Biophys Sin (Shanghai). 2010 Jan;42(1):45-51.   
     

2009 (12)

  1. The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways. Griesenbach U et al., Biomaterials
    Biomaterials. 2010 Mar;31(9):2665-72. doi: 10.1016/j.biomaterials.2009.12.005. Epub 2009 Dec 21.   
     
  2. Detection of CFTR transgene mRNA expression in respiratory epithelium isolated from the murine nasal cavity. Holder E et al., The Journal Of Gene Medicine
    J Gene Med. 2010 Jan;12(1):55-63. doi: 10.1002/jgm.1413.   
     
  3. SELDI-TOF biomarker signatures for cystic fibrosis, asthma and chronic obstructive pulmonary disease. Gomes-Alves P et al., Clinical Biochemistry
    Clin Biochem. 2010 Jan;43(1-2):168-77. doi: 10.1016/j.clinbiochem.2009.10.006. Epub 2009 Oct 20.   
     
  4. Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Gray RD et al., Chest
    Chest. 2010 Mar;137(3):635-41. doi: 10.1378/chest.09-1047. Epub 2009 Oct 3.   
     
  5. Limitations of the murine nose in the development of nonviral airway gene transfer. Griesenbach U et al., American Journal Of Respiratory Cell And Molecular Biology
    Am J Respir Cell Mol Biol. 2010 Jul;43(1):46-54. doi: 10.1165/rcmb.2009-0075OC. Epub 2009 Jul 31.   
     
  6. Identification and functional characterization of cytoplasmic determinants of plasmid DNA nuclear import. Munkonge FM et al., The Journal Of Biological Chemistry
    J Biol Chem. 2009 Sep 25;284(39):26978-87. doi: 10.1074/jbc.M109.034850. Epub 2009 Jul 28.   
     
  7. An immunocytochemical assay to detect human CFTR expression following gene transfer. Davidson H et al., Molecular And Cellular Probes
    Mol Cell Probes. 2009 Dec;23(6):272-80. doi: 10.1016/j.mcp.2009.07.001. Epub 2009 Jul 15.   
     
  8. Non-viral vectors in cystic fibrosis gene therapy: recent developments and future prospects. Pringle IA et al., Expert Opinion On Biological Therapy
    Expert Opin Biol Ther. 2009 Aug;9(8):991-1003. doi: 10.1517/14712590903055029.   
     
  9. Monitoring respiratory disease severity in cystic fibrosis. Davies JC et al., Respiratory Care
    Respir Care. 2009 May;54(5):606-17.   
     
  10. The role of doxorubicin in non-viral gene transfer in the lung. Griesenbach U et al., Biomaterials
    Biomaterials. 2009 Apr;30(10):1971-7. doi: 10.1016/j.biomaterials.2008.12.037. Epub 2009 Jan 18.   
     
  11. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Griesenbach U et al., Advanced Drug Delivery Reviews
    Adv Drug Deliv Rev. 2009 Feb 27;61(2):128-39. doi: 10.1016/j.addr.2008.09.010. Epub 2008 Dec 24.   
     
  12. Progress and prospects: the design and production of plasmid vectors. Gill DR et al., Gene Therapy
    Gene Ther. 2009 Feb;16(2):165-71. doi: 10.1038/gt.2008.183. Epub 2009 Jan 8.   
     

2008 (18)

  1. Mannose-binding lectin is present in the infected airway: a possible pulmonary defence mechanism. Fidler KJ et al., Thorax
    Thorax. 2009 Feb;64(2):150-5. doi: 10.1136/thx.2008.100073. Epub 2008 Nov 6.   
     
  2. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. McBain SC et al., Nanotechnology
    Nanotechnology. 2008 Oct 8;19(40):405102. doi: 10.1088/0957-4484/19/40/405102. Epub 2008 Aug 20.   
     
  3. Cystic fibrosis: ferreting with fibroblasts for cystic fibrosis. Griesenbach U et al., Gene Therapy
    Gene Ther. 2009 Jan;16(1):1-2. doi: 10.1038/gt.2008.155. Epub 2008 Oct 2.   
     
  4. Ignoring the nonsense: a phase II trial in cystic fibrosis. Hyde SC et al., Lancet
    Lancet. 2008 Aug 30;372(9640):691-2. doi: 10.1016/S0140-6736(08)61169-1. Epub 2008 Aug 20.   
     
  5. Assessment of CFTR function after gene transfer in vitro and in vivo. Griesenbach U et al., Methods In Molecular Biology (Clifton, N.J.)
    Methods Mol Biol. 2008;433:229-42. doi: 10.1007/978-1-59745-237-3_14.   
     
  6. Tripod-like cationic lipids as novel gene carriers. Unciti-Broceta A et al., Journal Of Medicinal Chemistry
    J Med Chem. 2008 Jul 24;51(14):4076-84. doi: 10.1021/jm701493f. Epub 2008 Jun 26.   
     
  7. Sputum proteomics in inflammatory and suppurative respiratory diseases. Gray RD et al., American Journal Of Respiratory And Critical Care Medicine
    Am J Respir Crit Care Med. 2008 Sep 1;178(5):444-52. doi: 10.1164/rccm.200703-409OC. Epub 2008 Jun 19.   
     
  8. Enhanced lung gene expression after aerosol delivery of concentrated pDNA/PEI complexes. Davies LA et al., Molecular Therapy : The Journal Of The American Society Of Gene Therapy
    Mol Ther. 2008 Jul;16(7):1283-90. doi: 10.1038/mt.2008.96. Epub 2008 May 20.   
     
  9. Validation of nasal potential difference measurements in gut-corrected CF knockout mice. Griesenbach U et al., American Journal Of Respiratory Cell And Molecular Biology
    Am J Respir Cell Mol Biol. 2008 Oct;39(4):490-6. doi: 10.1165/rcmb.2007-0385OC. Epub 2008 May 5.   
     
  10. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Hyde SC et al., Nature Biotechnology
    Nat Biotechnol. 2008 May;26(5):549-51. doi: 10.1038/nbt1399. Epub 2008 Apr 27.   
     
  11. Adenovirus-mediated in utero expression of CFTR does not improve survival of CFTR knockout mice. Davies LA et al., Molecular Therapy : The Journal Of The American Society Of Gene Therapy
    Mol Ther. 2008 May;16(5):812-8. doi: 10.1038/mt.2008.25. Epub 2008 Mar 11.   
     
  12. Bactofection of lung epithelial cells in vitro and in vivo using a genetically modified Escherichia coli. Larsen MD et al., Gene Therapy
    Gene Ther. 2008 Mar;15(6):434-42. doi: 10.1038/sj.gt.3303090. Epub 2008 Jan 24.   
     
  13. Biomarkers for cystic fibrosis lung disease: application of SELDI-TOF mass spectrometry to BAL fluid. MacGregor G et al., Journal Of Cystic Fibrosis : Official Journal Of The European Cystic Fibrosis Society
    J Cyst Fibros. 2008 Sep;7(5):352-8. doi: 10.1016/j.jcf.2007.12.005. Epub 2008 Feb 1.   
     
  14. Nasal abnormalities in cystic fibrosis mice independent of infection and inflammation. Hilliard TN et al., American Journal Of Respiratory Cell And Molecular Biology
    Am J Respir Cell Mol Biol. 2008 Jul;39(1):19-25. doi: 10.1165/rcmb.2007-0284OC. Epub 2008 Jan 31.   
     
  15. Lung clearance index in CF: a sensitive marker of lung disease severity. Davies JC et al., Thorax
    Thorax. 2008 Feb;63(2):96-7. doi: 10.1136/thx.2007.082768.   
     
  16. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera Carlisle RC et al., Journal of Gene Medicine
    J Gene Med. 2008 Apr;10(4):400-11. doi: 10.1002/jgm.1161.   
     
  17. Increased airway smooth muscle mass in children with asthma, cystic fibrosis, and non-cystic fibrosis bronchiectasis. Regamey N et al., American Journal Of Respiratory And Critical Care Medicine
    Am J Respir Crit Care Med. 2008 Apr 15;177(8):837-43. doi: 10.1164/rccm.200707-977OC. Epub 2008 Jan 24.   
     
  18. Endobronchial biopsy in childhood. Regamey N et al., Chest
    Chest. 2008 Jan;133(1):312; author reply 313. doi: 10.1378/chest.07-1735.   
     

2007 (17)

  1. In vivo imaging of gene transfer to the respiratory tract. Griesenbach U et al., Biomaterials
    Biomaterials. 2008 Apr;29(10):1533-40. Epub 2007 Dec 21.   
     
  2. Cystic fibrosis. Davies JC et al., BMJ (Clinical Research Ed.)
    BMJ. 2007 Dec 15;335(7632):1255-9.   
     
  3. Chimeric constructs endow the human CFTR Cl- channel with the gating behavior of murine CFTR. Scott-Ward TS et al., Proceedings Of The National Academy Of Sciences Of The United States Of America
    Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16365-70. Epub 2007 Oct 3.   
     
  4. Progress and prospects: gene therapy clinical trials (part 1). Alexander BL et al., Gene Therapy
    Gene Ther. 2007 Oct;14(20):1439-47.   
     
  5. Expression and maturation of Sendai virus vector-derived CFTR protein: functional and biochemical evidence using a GFP-CFTR fusion protein. Ban H et al., Gene Therapy
    Gene Ther. 2007 Dec;14(24):1688-94. Epub 2007 Sep 27.   
     
  6. Lack of repeat transduction by recombinant adeno-associated virus type 5/5 vectors in the mouse airway. Sumner-Jones SG et al., Journal Of Virology
    J Virol. 2007 Nov;81(22):12360-7. Epub 2007 Sep 12.   
     
  7. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Horsley AR et al., Thorax
    Thorax. 2008 Feb;63(2):135-40. Epub 2007 Aug 3.   
     
  8. CFTR gene transfer to human cystic fibrosis pancreatic duct cells using a Sendai virus vector. Rakonczay Z Jr et al., Journal Of Cellular Physiology
    J Cell Physiol. 2008 Feb;214(2):442-55.   
     
  9. Sendai virus-mediated CFTR gene transfer to the airway epithelium. Ferrari S et al., Gene Therapy
    Gene Ther. 2007 Oct;14(19):1371-9. Epub 2007 Jun 28.   
     
  10. Airway remodelling in children with cystic fibrosis. Hilliard TN et al., Thorax
    Thorax. 2007 Dec;62(12):1074-80. Epub 2007 May 25.   
     
  11. Electroporation enhances reporter gene expression following delivery of naked plasmid DNA to the lung. Pringle IA et al., The Journal Of Gene Medicine
    J Gene Med. 2007 May;9(5):369-80.   
     
  12. Biomarkers for cystic fibrosis: are we progressing? Alton EW et al., American Journal Of Respiratory And Critical Care Medicine
    Am J Respir Crit Care Med. 2007 Apr 15;175(8):750-1.   
     
  13. Identification of transfected cell types following non-viral gene transfer to the murine lung. Davies LA et al., The Journal Of Gene Medicine
    J Gene Med. 2007 Mar;9(3):184-96.   
     
  14. Quality, size, and composition of pediatric endobronchial biopsies in cystic fibrosis. Regamey N et al., Chest
    Chest. 2007 Jun;131(6):1710-7. Epub 2007 Feb 22.   
     
  15. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Xenariou S et al., Gene Therapy
    Gene Ther. 2007 May;14(9):768-74. Epub 2007 Feb 15.   
     
  16. Computed tomography and cystic fibrosis: promises and problems. Aziz ZA et al., Thorax
    Thorax. 2007 Feb;62(2):181-6.   
     
  17. Optimizing aerosol gene delivery and expression in the ovine lung. McLachlan G et al., Molecular Therapy : The Journal Of The American Society Of Gene Therapy
    Mol Ther. 2007 Feb;15(2):348-54.   
     

2006 (8)

  1. Long-term persistence of gene expression from adeno-associated virus serotype 5 in the mouse airways. Sumner-Jones SG et al., Gene Therapy
    Gene Ther. 2006 Dec;13(24):1703-13. Epub 2006 Jul 20.   
     
  2. Gene therapy progress and prospects: cystic fibrosis. Griesenbach U et al., Gene Therapy
    Gene Ther. 2006 Jul;13(14):1061-7.   
     
  3. Optimising non-viral gene delivery in a tumour spheroid model. Mellor HR et al., The Journal Of Gene Medicine
    J Gene Med. 2006 Sep;8(9):1160-70.   
     
  4. Intravenously administered oligonucleotides can be delivered to conducting airway epithelium via the bronchial circulation. Holder E et al., Gene Therapy
    Gene Ther. 2006 Dec;13(23):1628-38. Epub 2006 Jun 22.   
     
  5. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Xenariou S et al., Gene Therapy
    Gene Ther. 2006 Nov;13(21):1545-52. Epub 2006 Jun 1.   
     
  6. Human-specific cystic fibrosis transmembrane conductance regulator antibodies detect in vivo gene transfer to ovine airways. Davidson H et al., American Journal Of Respiratory Cell And Molecular Biology
    Am J Respir Cell Mol Biol. 2006 Jul;35(1):72-83. Epub 2006 Feb 23.   
     
  7. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo. Griesenbach U et al., Respiratory Research
    Respir Res. 2006 Feb 15;7:26.   
     
  8. Electroporation-mediated interleukin-10 overexpression in skeletal muscle reduces acute rejection in rat cardiac allografts. Tavakoli R et al., The Journal Of Gene Medicine
    J Gene Med. 2006 Feb;8(2):242-8.   
     

2005 (10)

  1. Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis. Hollox EJ et al., Journal Of Negative Results In Biomedicine
    J Negat Results Biomed. 2005 Dec 7;4:9.   
     
  2. Effect of tolerance induction to immunodominant T-cell epitopes of Sendai virus on gene expression following repeat administration to lung. Griesenbach U et al., Gene Therapy
    Gene Ther. 2006 Mar;13(5):449-56.   
     
  3. Exploring the mechanisms of macrolides in cystic fibrosis. Equi AC et al., Respiratory Medicine
    Respir Med. 2006 Apr;100(4):687-97. Epub 2005 Sep 26.   
     
  4. Sendai virus for gene therapy and vaccination. Griesenbach U et al., Current Opinion In Molecular Therapeutics
    Curr Opin Mol Ther. 2005 Aug;7(4):346-52.   
     
  5. Airway gene therapy. Davies JC et al., Advances In Genetics
    Adv Genet. 2005;54:291-314.   
     
  6. Electrohydrodynamic comminution: a novel technique for the aerosolisation of plasmid DNA. Davies LA et al., Pharmaceutical Research
    Pharm Res. 2005 Aug;22(8):1294-304. Epub 2005 Aug 3.   
     
  7. Vascular oligonucleotide transfer facilitated by a polymer-coated stent. Radke PW et al., Human Gene Therapy
    Hum Gene Ther. 2005 Jun;16(6):734-40.   
     
  8. Detection of plasmid DNA vectors following gene transfer to the murine airways. Pringle IA et al., Gene Therapy
    Gene Ther. 2005 Aug;12(15):1206-14.   
     
  9. Keratinocyte growth factor therapy in murine oleic acid-induced acute lung injury. Ulrich K et al., American Journal Of Physiology. Lung Cellular And Molecular Physiology
    Am J Physiol Lung Cell Mol Physiol. 2005 Jun;288(6):L1179-92. Epub 2005 Jan 28.   
     
  10. Potential difference measurements in the lower airway of children with and without cystic fibrosis. Davies JC et al., American Journal Of Respiratory And Critical Care Medicine
    Am J Respir Crit Care Med. 2005 May 1;171(9):1015-9. Epub 2005 Jan 7.   
     

2004 (11)

  1. Advances in cystic fibrosis gene therapy. Griesenbach U et al., Current Opinion In Pulmonary Medicine
    Curr Opin Pulm Med. 2004 Nov;10(6):542-6.   
     
  2. Potent stimulation of gene expression by histone deacetylase inhibitors on transiently transfected DNA. Nan X et al., Biochemical And Biophysical Research Communications
    Biochem Biophys Res Commun. 2004 Nov 5;324(1):348-54.   
     
  3. Gene therapy for cystic fibrosis: an example for lung gene therapy. Griesenbach U et al., Gene Therapy
    Gene Ther. 2004 Oct;11 Suppl 1:S43-50.   
     
  4. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. Hyndman L et al., Journal Of Controlled Release : Official Journal Of The Controlled Release Society
    J Control Release. 2004 Oct 19;99(3):435-44.   
     
  5. Normal nasal mucociliary clearance in CF children: evidence against a CFTR-related defect. McShane D et al., The European Respiratory Journal
    Eur Respir J. 2004 Jul;24(1):95-100.   
     
  6. Measurement of halide efflux from cultured and primary airway epithelial cells using fluorescence indicators. Munkonge FM et al., Journal of Cystic Fibrosis
    J Cyst Fibros. 2004 Aug;3 Suppl 2:171-6.   
     
  7. A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Ferrari S et al., Gene Therapy
    Gene Ther. 2004 Nov;11(22):1659-64.   
     
  8. Effects of intramyocardial pVEGF165 delivery on regional myocardial blood flow: evidence for a spatial 'delivery-efficacy' mismatch. Radke PW et al., Gene Therapy
    Gene Ther. 2004 Aug;11(16):1249-55.   
     
  9. Critical appraisal of the mouse model of myocardial infarction. Degabriele NM et al., Experimental Physiology
    Exp Physiol. 2004 Jul;89(4):497-505. Epub 2004 May 6.   
     
  10. Revisiting the mouse lung model for CF. Boyd AC et al., Gene Therapy
    Gene Ther. 2004 May;11(9):737-8.   
     
  11. The development of gene therapy for diseases of the lung. Gill DR et al., Cellular And Molecular Life Sciences : CMLS
    Cell Mol Life Sci. 2004 Feb;61(3):355-68.   
     

2003 (5)

  1. The effects of plasmid copy number and sequence context upon transfection efficiency. Walker WE et al., Journal Of Controlled Release : Official Journal Of The Controlled Release Society
    J Control Release. 2004 Jan 8;94(1):245-52.   
     
  2. Update on gene therapy for cystic fibrosis. Griesenbach U et al., Current Opinion In Molecular Therapeutics
    Curr Opin Mol Ther. 2003 Oct;5(5):489-94.   
     
  3. Transfection efficiency and toxicity following delivery of naked plasmid DNA and cationic lipid-DNA complexes to ovine lung segments. Emerson M et al., Molecular Therapy : The Journal Of The American Society Of Gene Therapy
    Mol Ther. 2003 Oct;8(4):646-53.   
     
  4. Emerging significance of plasmid DNA nuclear import in gene therapy. Munkonge FM et al., Advanced Drug Delivery Reviews
    Adv Drug Deliv Rev. 2003 Jun 16;55(6):749-60.   
     
  5. Airway surface pH in subjects with cystic fibrosis. McShane D et al., The European Respiratory Journal
    Eur Respir J. 2003 Jan;21(1):37-42.   
     

2002 (5)

  1. Gene therapy progress and prospects: cystic fibrosis. Griesenbach U et al., Gene Therapy
    Gene Ther. 2002 Oct;9(20):1344-50.   
     
  2. Optimisation of real-time quantitative RT-PCR for the evaluation of non-viral mediated gene transfer to the airways. Rose AC et al., Gene Therapy
    Gene Ther. 2002 Oct;9(19):1312-20.   
     
  3. Bone marrow stem cells do not repopulate the healthy upper respiratory tract. Davies JC et al., Pediatric Pulmonology
    Pediatr Pulmonol. 2002 Oct;34(4):251-6.   
     
  4. Cytoplasmic deposition of NFkappaB decoy oligonucleotides is insufficient to inhibit bleomycin-induced pulmonary inflammation. Griesenbach U et al., Gene Therapy
    Gene Ther. 2002 Aug;9(16):1109-15.   
     
  5. The nasal epithelium as a factory for systemic protein delivery. Griesenbach U et al., Molecular Therapy : The Journal Of The American Society Of Gene Therapy
    Mol Ther. 2002 Feb;5(2):98-103.   
     

2001 (5)

  1. Prospects for gene therapy in lung disease. Davies JC et al., Current Opinion In Pharmacology
    Curr Opin Pharmacol. 2001 Jun;1(3):272-7.   
     
  2. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gill DR et al., Gene Therapy
    Gene Ther. 2001 Oct;8(20):1539-46.   
     
  3. Gene therapy for cystic fibrosis. Davies JC et al., The Journal Of Gene Medicine
    J Gene Med. 2001 Sep-Oct;3(5):409-17.   
     
  4. Recent progress in gene therapy for cystic fibrosis. Griesenbach U et al., Current Opinion In Molecular Therapeutics
    Curr Opin Mol Ther. 2001 Aug;3(4):385-9.   
     
  5. Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. Scheid P et al., The European Respiratory Journal
    Eur Respir J. 2001 Jan;17(1):27-35.   
     

2000 (6)

  1. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Yonemitsu Y et al., Nature Biotechnology
    Nat Biotechnol. 2000 Sep;18(9):970-3.   
     
  2. Genomic sequence analysis of Fugu rubripes CFTR and flanking genes in a 60 kb region conserving synteny with 800 kb of human chromosome 7. Davidson H et al., Genome Research
    Genome Res. 2000 Aug;10(8):1194-203.   
     
  3. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Hyde SC et al., Gene Therapy
    Gene Ther. 2000 Jul;7(13):1156-65.   
     
  4. Insertion of natural intron 6a-6b into a human cDNA-derived gene therapy vector for cystic fibrosis improves plasmid stability and permits facile RNA/DNA discrimination. Boyd AC et al., The Journal Of Gene Medicine
    J Gene Med. 1999 Sep-Oct;1(5):312-21.   
     
  5. Anti-inflammatory gene therapy directed at the airway epithelium. Griesenbach U et al., Gene Therapy
    Gene Ther. 2000 Feb;7(4):306-13.   
     
  6. Bacterial DNA is implicated in the inflammatory response to delivery of DNA/DOTAP to mouse lungs. McLachlan G et al., Gene Therapy
    Gene Ther. 2000 Mar;7(5):384-92.   
     

1999 (6)

  1. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Alton EW et al., Lancet
    Lancet. 1999 Mar 20;353(9157):947-54.   
     
  2. The pathogenic consequences of a single mutated CFTR gene. Griesenbach U et al., Thorax
    Thorax. 1999 Aug;54 Suppl 2:S19-23.   
     
  3. Gene therapy for asthma: inspired research or unnecessary effort? Alton EW et al., Gene Therapy
    Gene Ther. 1999 Feb;6(2):155-6.   
     
  4. Elimination of contaminant Escherichia coli chromosomal DNA from preparations of P1 artificial chromosome recombinants facilitates directed subcloning. Davidson H et al., Electrophoresis
    Electrophoresis. 1999 Jun;20(7):1469-75.   
     
  5. pSURF-2, a modified BAC vector for selective YAC cloning and functional analysis. Boyd AC et al., BioTechniques
    Biotechniques. 1999 Jul;27(1):164-70, 172, 175.   
     
  6. Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition. Davies JC et al., The European Respiratory Journal
    Eur Respir J. 1999 Mar;13(3):565-70.   
     

1998 (6)

  1. Milking gene therapy. Alton EW et al., Nature Medicine
    Nat Med. 1998 Oct;4(10):1121-2.   
     
  2. Prospects for gene therapy for cystic fibrosis. Davies JC et al., Molecular Medicine Today
    Mol Med Today. 1998 Jul;4(7):292-9.   
     
  3. Towards gene therapy for cystic fibrosis: a clinical progress report. Alton EW et al., Gene Therapy
    Gene Ther. 1998 Mar;5(3):291-2.   
     
  4. The effect of mucolytic agents on gene transfer across a CF sputum barrier in vitro. Stern M et al., Gene Therapy
    Gene Ther. 1998 Jan;5(1):91-8.   
     
  5. PCR-generated cross-over linkers for site-directed mutagenesis. Boyd AC et al., BioTechniques
    Biotechniques. 1997 Nov;23(5):827-30.   
     
  6. A second dose of a CFTR cDNA-liposome complex is as effective as the first dose in restoring cAMP-dependent chloride secretion to null CF mice trachea. Goddard CA et al., Gene Therapy
    Gene Ther. 1997 Nov;4(11):1231-6.   
     

1997 (4)

  1. CFTR gene transfer reduces the binding of Pseudomonas aeruginosa to cystic fibrosis respiratory epithelium. Davies JC et al., American Journal Of Respiratory Cell And Molecular Biology
    Am J Respir Cell Mol Biol. 1997 Jun;16(6):657-63.   
     
  2. Chloride secretion in the trachea of null cystic fibrosis mice: the effects of transfection with pTrial10-CFTR2. MacVinish LJ et al., The Journal Of Physiology
    J Physiol. 1997 Mar 15;499 ( Pt 3):677-87.   
     
  3. A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gill DR et al., Gene Therapy
    Gene Ther. 1997 Mar;4(3):199-209.   
     
  4. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Porteous DJ et al., Gene Therapy
    Gene Ther. 1997 Mar;4(3):210-8.   
     

1996 (2)

  1. Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP. McLachlan G et al., Gene Therapy
    Gene Ther. 1996 Dec;3(12):1113-23.   
     
  2. Plasmid DNA molecules complexed with cationic liposomes are protected from degradation by nucleases and shearing by aerosolisation. Crook K et al., Gene Therapy
    Gene Ther. 1996 Sep;3(9):834-9.   
     

1995 (2)

  1. Evaluation in vitro and in vivo of cationic liposome-expression construct complexes for cystic fibrosis gene therapy. McLachlan G et al., Gene Therapy
    Gene Ther. 1995 Nov;2(9):614-22.   
     
  2. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Caplen NJ et al., Nature Medicine
    Nat Med. 1995 Jan;1(1):39-46.   
     

1994 (2)

  1. Drug efflux mediated by the human multidrug resistance P-glycoprotein is inhibited by cell swelling. Sardini A et al., Journal Of Cell Science
    J Cell Sci. 1994 Dec;107 ( Pt 12):3281-90.   
     
  2. Tamoxifen blocks chloride channels. A possible mechanism for cataract formation. Zhang JJ et al., The Journal Of Clinical Investigation
    J Clin Invest. 1994 Oct;94(4):1690-7.   
     

1993 (3)

  1. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Alton EW et al., Nature Genetics
    Nat Genet. 1993 Oct;5(2):135-42.   
     
  2. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Hyde SC et al., Nature
    Nature. 1993 Mar 18;362(6417):250-5.   
     
  3. Specific inhibitors distinguish the chloride channel and drug transporter functions associated with the human multidrug resistance P-glycoprotein. Mintenig GM et al., Receptors & Channels
    Receptors Channels. 1993;1(4):305-13.   
     

1992 (3)

  1. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. Trezise AE et al., The EMBO Journal
    EMBO J. 1992 Dec;11(12):4291-303.   
     
  2. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Gill DR et al., Cell
    Cell. 1992 Oct 2;71(1):23-32.   
     
  3. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Valverde MA et al., Nature
    Nature. 1992 Feb 27;355(6363):830-3.   
     

1990 (2)

  1. Binding protein-dependent transport systems. Higgins CF et al., Journal Of Bioenergetics And Biomembranes
    J Bioenerg Biomembr. 1990 Aug;22(4):571-92.   
     
  2. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Hyde SC et al., Nature
    Nature. 1990 Jul 26;346(6282):362-5.   
     

 

A frozen vial of GL67A (left) and a frozen vial of pGM169 plasmid DNA (right)

 

Schematic diagram of the large human airways.

 

Pellets of DNA following precipitation.

 

DNA fragments being cut from an agarose gel exposed to UV.

 

Large scale lentivirus production in suspension culture.

 

A cake that only some of us got to enjoy!

 

Proposed 3D model of the CFTR protein.

 

A CFTR Western blot, to confirm protein production in cell culture.

 

A pellet of E.coli containing a plasmid expressing a pink fluorescent protein.

 

Mouse lung large airway (cell nuclei blue) transduced with an adenoviral vector (green).

 

Purifying mRNA from tissue samples.

 

Sheep lung parenchyma (cell nuclei blue) transduced with an adenoviral vector (green).

 

Light microscope image of a human airway liquid interface cultures. Dark patches are mucous.

 

E.coli from a large scale industrial production of our clinical trial plasmid pGM169.

 

Human airway liquid interface cultures transduced with a lentivirus expressing Luciferase.